
Bits & Bots Final Project

July.30.2021

─

Nicholas S. Peitong Z. Minhye K. Taiyi C.
Team II - CSE_3241

1

Part I -- The Final Report 3

Section 1 -- Database Description 3
Introduction and Project Summary 3
ER Diagram 4
Relational Schema 7
Relational Algebra 9
Database Normalization 12

Section 2 -- User Manual 13
S2.A Table description including table functions, keys, constraints, and data types. 13
S2.B A catalog of supplied SQL Queries With explanations and sample output for each. 20

SimpleQueries.sql 20
ExtraQueries.sql 28
AdvancedQueries.sql 30

S2.C INSERT and DELETE SQL code samples. 38
INSERT samples 38
DELETE samples: 40

S2.D Two indexes properly explained,including SQL code. 42
S2.E Two Views Explained,including SQL code data resulting from the execution. 43
S2F. Two transactions explained, including SQL code. 44

Section 3 -- Team reports and Graded Checkpoint Documents 45
a. Detailed description of all team member contributions 45
b. Reflection on the project completion process 45
c. Description of feedback received, and revisions completed throughout the process 45
d. Marked Project Checkpoints and Worksheets 45

Part II --The SQL Database(README) 46

2

Part I -- The Final Report

Section 1 -- Database Description

I. Introduction and Project Summary

For more details about our team, please see our orientation video here:
https://www.youtube.com/watch?v=Ja1GzJDZhls&ab_channel=NickS

Our team is CSE 3241 Team 2. The team members are: Nicholas Shen, Taiyi Chen,
Minhye Kang, Peitong Zhu. Our team is employed by DB 4Ever, a consulting company
with clients worldwide. We have been assigned to help Ms. Yotta Bietz set up a
database for her latest entrepreneurial enterprise, BITS & BOTS, which is an online
marketplace for the maker community. Our team is required to make an information
management system and database to support virtual inventory, buyer/seller accounts,
sales, feedback operations, and etc.

Our project is a database that supports the usual operations of an online store.
However, this store only sells non-physical items, such as pdf books and source code.
Buyers can search the products they want and add them to a shopping cart. They can
make purchases for different items from different shops in one order. Sellers can list
their products online, manage their inventory, and view feedback from the buyers. There
are many other functions that our database can do, details will be shown later. Extra
features of our product are that users can ask the customer service for help, and there is

3

https://www.youtube.com/watch?v=Ja1GzJDZhls&ab_channel=NickS

a quality inspection system, which can report the poor quality of a certain product so that
it can be updated or removed from the market.

II. ER Diagram

4

For a better view, please see .png file in ATTACHMENT or use the draw.io link below:
https://drive.google.com/file/d/1aqQwf0lWnXxBnASTyd1IJCcxB6T7Q0MS/view?usp=sharing

ERD Explanation:

5

https://drive.google.com/file/d/1aqQwf0lWnXxBnASTyd1IJCcxB6T7Q0MS/view?usp=sharing

All the attributes are shown in the diagram. Users can ask customer service for help. Users are
linked to payment systems, which pay and receive money. Users are separated into buyer and
seller. Buyers can search for products and visit stores. Buyers can add items to the shopping
carts and place orders. Buyers can also request a refund. Sellers can judge whether those
refunding requests are reasonable. Of course, refund information includes refund items as well.
They can also manage products and their stores. The shopping carts include ordered items and
can be transferred into real orders. Orders are linked to refund and include order items
connecting to products. Ordered items have reviews made by buyers. Finally, all products have
quality inspectors who make quality reports on specific items.

6

III. Relational Schema

For a better view, please see .png file in ATTACHMENT or use the draw.io link below:
https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/vi
ew?usp=sharing

7

https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/view?usp=sharing
https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/view?usp=sharing

Schema Explanation:

Step 1: Mapping each regular entity type into a relation.
The regular entities are payments, users, customer_service, buyer, orders, refund,
shopping_cart, order_items, product, seller, store, quailty_inspector, and quality_report. Each of
their simple attributes maps to an attribute of the relation. All derived attributes, such as price,
are not necessary to be represented. The primary key of the entity type maps to the primary key
of the relation.

Step 2: Mapping weak entities.
The weak entities in our ERD are refund_items and reviews. Our team created a new relation
and included all simple attributes of the entity type as attributes of the new relation. And these
relations include a primary key attribute of the owner as a foreign key.

Step3: Mapping of binary 1:N relationship types.
The 1:N relationships in our EDR are: “uses” between payments and orders, “places” between
buyer and orders, “uses” between buyer and shopping_cart, “requests” between buyer and
refund, and so on. We add the key attributes from the “1” side as a foreign key to the relation on
the other side. No new relation is added.

Step 4: Mapping of binary 1:1 relationship types.
The 1:1 relationships in our EDR are “uses” between buyer and shooping_cart, “trans_to”
between shooping_cart and orders, “linked_to” between cart_items and product. We add the
key attributes from the total participation side as a foreign key to the relation on the partial
participation side.

Step 5: Mapping of binary M:N relationship types.
For each binary M:N relationship in our ERD, we created a new relation, including the primary
key of participating entity types as foreign key attributes in the new relation. All simple attributes
of M:N relationship types are included as well. For example, in our relational schema, SEARCH
is such a new relation. Its primary keys, as well as foreign keys, are userID and proID.

Since our relationship is in 3NF, there are no multivalued attributes. So, the description above is
all the steps we take in the process.

8

IV. Relational Algebra

3. Given your relational schema, provide the relational algebra to perform the following queries. If
your schema cannot provide answers to these queries, revise your ER Model and your relational
schema to contain/supply the appropriate information for these queries:

a. Find the titles of all IP Items that cost less than $10 and the name of the stores selling those

𝛑 pro_name (𝝈 pro_price < 10 (PRODUCT)) ⋈ pro_id= pro_id STORE

b. Give all the titles and their dates of purchase made by given Buyer (you choose how to
designate the buyer)

T1 ← 𝝈 user_id = “selected user” (ORDER)

T2 ← T1 ⋈ order_id = order_id (ORDER_ITEM)

T3 ← T2 ⋈ pro_id = pro_id (PRODUCT)

𝛑 pro_name, order_date(T3)

c. List all the buyers who purchased an IP Item from a given store and the names of the IP
Items they purchased.

T1 ← 𝝈 store = “selected store” (store ⋈ pro_id =pro_id(Product))
T2 ← T1 ⋈ pro_id = pro_id (ORDER_ITEM)
T3 ← T2 ⋈ order_id = order_id (order)
T4 ← T3 ⋈ user_id = user_id (buyer)
T5 ← T4 ⋈ user_id = user_id (user)
Result ← 𝛑 user_name, user_id, pro_name (T5)

d. Find the buyer who has purchased the most IP Items and the total number of IP Items
they have purchased.

Using result above
T1 (user_id, numItem) ← user_id ℑ COUNT pro_name (result above)
T2 (user_id, countItem) ← user_id ℑ MAXIMUM numItem (T1)
𝛑 name, countItem (T2 ⋈ user_id = user_id (user))

e. Create a list of stores who currently offer 5 or less IP Items for sale

9

T1 ← STORE ⋈ pro_id = pro_id (PRODUCT)
T2(ID,count) ←store_id ℑ COUNT pro_name
𝛑 ID (𝝈 count <=5 (T2))

f. Find the highest selling item, total number of units of that item sold, total dollar sales for that
item, and the store/seller who sells it.

T1(ID, count)← pro_id ℑ COUNT pro_id (ORDER_ITEMS)
T2(ID, max) ← ID ℑ MAXIMUM count(T1)
T3 ← T2 ⋈ ID=ProID (PRODUCT)
T4 ← T3 ⋈ userID = userID (SELLER)
𝛑 ID,max,userID (T4)

g. Create a list of all payment types accepted, number of times each of them was used, and
total amount charged to that type of payment.

T1 ← PAYMENTS ⋈ pay_id = pay_id (ORDER)
T2(acct_type, total) ← acct_type ℑ SUM orderPrice (T1)
T3(acct_type, timesCount) ← acct_type ℑ COUNT acct_type (T1)
T4 ← T2 ⋈ acct_type = acct_type (T3)
RESULT ← 𝛑 acct_type, timesCount, total (T4)

h. Retrieve the name and contact info of the customer who has the highest karma
point balance.

T1(ID, max) ← pay_id ℑ MAXIMUM K_acct (PAYMENTS)
T2 ← T1 ⋈ user_id = userID (USER)
𝛑 user_name, user_email (T2)

i. Create a list of top 10 rated IP items and the stores selling those.
Adding rating attribute to review:
To display top 1:

T1←Product ⋈ pro_id= pro_id (ORDER_ITEMS)
T2← T1 ⋈ item_id = item_id (Reviews)
T3(pro_id,ave) ← pro_id ℑ AVERAGE rating (T2)
T4 (pro_id,ave) ← pro_id ℑ MAXIMUM ave (T3)
T5 ← T4 ⋈ pro_id = pro_id (STORE)
RESULT ← 𝛑 store_name, pro_title, ave (T5)

10

4. Three additional interesting queries in plain English and also relational algebra. Each of your
queries should include at least one of these:

a. outer joins
Show the title and price of each IP in the shopping cart.

T1 ← PRODUCT ⟕pro_id = pro_id (CART_ITEMS)
T2 ← T1 ⟕ cart_id=cart_id (SHOPPING_CART)
𝛑 pro_name, pro_price (T2)

b. aggregate function
List the average cost of IPs in all the stores.

T1 ← STORE ⋈ pro_id = pro_id(PRODUCT)
Result (store_id, average) ← store_id ℑ AVERAGE pro_price (T1)

c. “extra” entities from CP01
Count the number of times customer service was called.

Result (cs_id, num) ← cs_id ℑ COUNT cs_id (CUSTOMER_SERVICE)

11

V. Database Normalization

PAYMENT is in 3NF. AcctNum, AcctBalance, paymentType and userID are dependent on
payID.
ORDERS is in 3NF. orderDate, orderDestination, orderPrice, payID, userID, cartID are
dependent on orderID.
SHOPPING_CART is in 3NF. cartDate and userID are dependent on cartID.
ORDER_REFUND is in 3NF. refundDate, refundValue, refundReason, userID, and orderID are
dependent on refundID.
USER is in 3NF. userName, userDOB, userGender, userEmail, userPhone are dependent on
userID.
BUYER is in 3NF. buyerPassword and buyerCredit are dependent on buyerID.
VISIT is in 3NF. There are no dependencies in this relation.
STORE_URL is in 3NF. storeURL is dependent in storeID.
REVIEW is in 3NF. reviewDate, reviewProduct, reviewBuyer, reviewSeller, itemRating, itemID is
dependent on reviewID.
SELLER is in 3NF. sellerPassword and sellerRank are dependent on userID.
STORE is in 3NF. storeName, storeBanner, storeBio, storePhoto, userID are dependent on
storeID.
ORDER_ITEM is in 3NF. oitemName, oitemPrice, oitemQuantioty, peoID, orderID are
dependent on itemID.
HELPS is in 3NF. There are no dependencies in this relation.
PRO_KEYWORD is in 3NF. proKeyword is dependent on proID.
PRO_PHOTO is in 3NF. proPhotos is dependent on proID.
CUSTOMER_SERVICE is in 3NF. csName and csType are dependent on csID.
SEARCH is in 3NF. There are no dependencies in this relation.
PRODUCT is in 3NF. proName, proPrice, proCategory, stockQuantity, userID, storeID are
dependent on proID.
CART_ITEM is in 3NF. citemName, citemQuantity, proID, cartID are dependent on citemID.
INSPECT is in 3NF. There are no dependencies in this relation.
QUALITY_INSPECTOR is in 3NF. qiName is dependent on qiID.
QUALITY_REPORT is in 3NF. reportDate, reportContent, and qiID are dependent on reportID.

12

Section 2 -- User Manual

S2.A Table description including table functions, keys, constraints, and data types.

USER USER has the information of both sellers and buyers, any person
uses the system.

user_id int NOT NULL,
user_name varchar(50) NOT NULL,
user_DOB date NOT NULL,
user_gender char(1) NOT NULL DEFAULT 'U', --
M-Male, F-Female, U-Prefer NOT to say
user_email varchar(50) NOT NULL UNIQUE

HELPS HELPS connects the customer to the specific type of the help they
requested.

help_user_id int NOT NULL,
help_cs_id int NOT NULL,

FOREIGN KEY (help_user_id) REFERENCES USER
(user_id),
FOREIGN KEY (help_cs_id) REFERENCES
CUSTOMER_SERVICE (cs_id)

CUSTOMER_SERVICE CUSTOMER_SERVICE helps users deal with any problems while
using the service.

cs_id int NOT NULL,
cs_name varchar(50) NOT NULL,
cs_type varchar(50)

PAYMENT PAYMENT includes the information of the payment that the user
could revise.

pay_id tinyint NOT NULL,
pay_user_id int NOT NULL,
acct_num varchar(50) NOT NULL UNIQUE,
acct_routing varchar(50) DEFAULT NULL,
acct_expire date DEFAULT NULL,
acct_balance int,
acct_type varchar(50) NOT NULL DEFAULT
'KarmaPoints',

13

FOREIGN KEY (pay_user_id) REFERENCES USER(user_id)

BUYER BUYER only has the information of the buyer from the USER.

buyer_id int NOT NULL,
buyer_psw varchar(50) NOT NULL,
buyer_phone varchar(50),
buyer_rank char(1) NOT NULL DEFAULT 'E', /*A to E*/

FOREIGN KEY (buyer_id) REFERENCES USER(user_id)

SHOPPING_CART SHOPPING_CART includes the date and who has saved the
product.

cart_id int NOT NULL,
cart_date date NOT NULL,
cart_buyer_id int NOT NULL,

FOREIGN KEY (cart_buyer_id) REFERENCES BUYER
(buyer_id)

CART_ITEM CART_ITEM has specific information of the product that the buyer
has saved to the shopping cart.

citem_id int NOT NULL,
citem_name varchar(50) NOT NULL,
citem_quantity int NOT NULL,
citem_pro_id int NOT NULL,
citem_cart_id int NOT NULL,

FOREIGN KEY (citem_pro_id) REFERENCES PRODUCT
(pro_id),
FOREIGN KEY (citem_cart_id) REFERENCES
SHOPPING_CART (cart_id)

ORDERS ORDER includes the overview of the order that the buyer has
placed, which include how he paid and connected from the
SHOPPING_CART.

order_id int NOT NULL,
order_date DATE NOT NULL,
order_destination varchar(50) NOT NULL,
order_price decimal(6,2) NOT NULL,
order_buyer_id int NOT NULL,
order_pay_id tinyint NOT NULL,
order_cart_id int NOT NULL,

14

FOREIGN KEY (order_buyer_id) REFERENCES BUYER
(buyer_id),
FOREIGN KEY (order_pay_id) REFERENCES
PAYMENT_METHOD (pay_id),
FOREIGN KEY (order_cart_id) REFERENCES
SHOPPING_CART (cart_id)

ORDER_ITEM ORDER_ITEM has details of the product from the ORDERS that
the buyer has placed.

oitem_id int NOT NULL,
oitem_name varchar(50) NOT NULL,
oitem_price int NOT NULL,
oitem_quantity int NOT NULL,
oitem_pro_id int NOT NULL,
oitem_order_id int NOT NULL,

FOREIGN KEY (oitem_pro_id) REFERENCES PRODUCT
(pro_id),
FOREIGN KEY (oitem_order_id) REFERENCES ORDERS
(order_id)

REVIEWS REVIEW has the rating for the product from the BUYER.

review_id int NOT NULL,
review_oitem_id int NOT NULL,
review_date date NOT NULL,
review_item varchar(255),
review_item_score tinyint, /* rating range: 0 ~
100 */
review_buyer varchar(255),
review_seller varchar(255),

FOREIGN KEY (review_oitem_id) REFERENCES ORDER_ITEM
(oitem_id) ON DELETE CASCADE

REFUND REFUND includes both information of buyer to see who has
returned the product and seller who sells the product that will be
requested to return.

refund_id int NOT NULL,
refund_status varchar(50) NOT NULL,
refund_start_date date NOT NULL,
refund_finish_date date NOT NULL,
refund_value int NOT NULL,
refund_buyer_id int NOT NULL,
refund_seller_id int NOT NULL,

15

refund_order_id int NOT NULL,

FOREIGN KEY (refund_seller_id) REFERENCES SELLER
(seller_id),
FOREIGN KEY (refund_buyer_id) REFERENCES BUYER
(buyer_id),
FOREIGN KEY (refund_order_id) REFERENCES ORDERS
(order_id)

REFUND_ITEMS REFUND_ITEMS has details of information of the product that has
been requested to return.

ritem_id int NOT NULL,
ritem_refund_id int NOT NULL,
ritem_name varchar(50) NOT NULL,
ritem_price int NOT NULL,
ritem_quantity int NOT NULL,
ritem_reason varchar(255) NOT NULL,

FOREIGN KEY (ritem_refund_id) REFERENCES REFUND
(refund_id) ON DELETE CASCADE

SEARCH SEARCH connects to the PRODUCT or BUYER for detail of the
product and buyer when the product id or buyer id has been
entered.

search_buyer_id int NOT NULL,
search_pro_id int NOT NULL,

FOREIGN KEY (search_buyer_id) REFERENCES BUYER
(buyer_id),
FOREIGN KEY (search_pro_id) REFERENCES PRODUCT
(pro_id)

SELLER SELLER only has the information of the buyer from the USER.

seller_id int NOT NULL,
seller_psw varchar(50) NOT NULL,
seller_ssn varchar(9) NOT NULL UNIQUE,
seller_phone varchar(50) NOT NULL,
seller_rank char(1) NOT NULL DEFAULT 'E', /*A to
E*/

FOREIGN KEY (seller_id) REFERENCES USER(user_id)

STORE STORE has the information of the store and connects with
SELLER since it is run by a seller.

16

store_id int NOT NULL,
store_name varchar(50) NOT NULL UNIQUE,
store_banner varchar(255) DEFAULT 'No banner',
store_bio varchar(255) DEFAULT 'No bio',
store_seller_photo varchar(255),
store_seller_id int NOT NULL,

FOREIGN KEY (store_seller_id) REFERENCES SELLER
(seller_id)

STORE_MEDIA STORE_MEDIA is for advertising the store.

media_id tinyint NOT NULL,
media_store_id int NOT NULL,
store_media_url varchar(255),

FOREIGN KEY (media_store_id) REFERENCES STORE
(store_id) ON DELETE CASCADE

PRODUCT PRODUCT has information of the product that seller sells and
sells from the store.

pro_id int NOT NULL,
pro_name varchar(50) NOT NULL,
pro_category varchar(50),
pro_stock int NOT NULL,
pro_price decimal(6,2) NOT NULL,
pro_store_id int NOT NULL,
pro_seller_id int NOT NULL,
pro_qi_id int NOT NULL,

FOREIGN KEY (pro_store_id) REFERENCES STORE
(store_id),
FOREIGN KEY (pro_seller_id) REFERENCES SELLER
(seller_id),
FOREIGN KEY (pro_qi_id) REFERENCES
QUALITY_INSPECTOR (qi_id)

PRO_IMAGES PRO_IMAGES has the integers that can be converted to product
image.

images_id tinyint NOT NULL,
images_pro_id int NOT NULL,
pro_image_url varchar(255) NOT NULL,

FOREIGN KEY (images_pro_id) REFERENCES PRODUCT
(pro_id) ON DELETE CASCADE

17

PRO_KEYWORDS PRO_KEYWORDS

keyword_id tinyint NOT NULL,
keyword_pro_id int NOT NULL,
pro_keyword varchar(50),

FOREIGN KEY (keyword_pro_id) REFERENCES PRODUCT
(pro_id) ON DELETE CASCADE

VISIT VISIT is to see who has visited what store.

visit_buyer_id int NOT NULL,
visit_store_id int NOT NULL,

FOREIGN KEY (visit_buyer_id) REFERENCES BUYER
(buyer_id),
FOREIGN KEY (visit_store_id) REFERENCES STORE
(store_id)

QULITY_INSPECTOR QUALITY_INSPECTOR can inspect the quality and validity of a
product.

qi_id int NOT NULL,
qi_name varchar(50) NOT NULL

QUALITY_REPORT QUALITY_REPORT shows the summary of products’ quality in
detail.

qp_id int NOT NULL,
qp_date date,
qp_content varchar(1024) NOT NULL,
qp_qi_id int NOT NULL,

FOREIGN KEY (qp_qi_id) REFERENCES QUALITY_INSPECTOR
(qi_id)

18

S2.B A catalog of supplied SQL Queries With explanations and sample output for each.

SimpleQueries.sql

3.a. Create a list of items under a certain price with stores selling those. In the sample,
we are finding all items under $10.

SELECT `product`.pro_name AS prudcut_name, `product`.pro_price
AS product_price, `store`.store_name
FROM `product`, `store`
WHERE `store`.store_id = `product`.pro_store_id AND
`product`.pro_price < 10;

19

3.b List all past purchased items of users who were born after 1985 with their order
date.

SELECT `order_item`.oitem_name AS purchased_item,
`orders`.order_date AS purchased_date, `user`.user_name AS
buyer_name, `user`.user_DOB AS buyer_birthdate
FROM `orders`, `order_item`, `user`
WHERE `orders`.order_id = `order_item`.oitem_order_id AND
`orders`.order_buyer_id = `user`.user_id AND `user`.user_DOB
> '1985-01-01';

3.c. List all the buyers who purchased an IP Item from a given store(store_id=800052)
and the names of the IP Items they purchased.

SELECT `user`.user_name AS buyer_name, `order_item`.oitem_name
AS purchased_item_name, `store`.store_name
FROM `user`, `buyer`, `orders`, `order_item`, `product`,
`store`
WHERE `store`.store_id = 800052 AND
`order_item`.`oitem_pro_id` = `product`.pro_id AND
`product`.pro_store_id = `store`.store_id
AND `order_item`.`oitem_order_id` = `orders`.order_id AND
`orders`.order_buyer_id = `buyer`.buyer_id AND
`buyer`.buyer_id = `user`.user_id;

20

3.d. Find the buyer who has purchased the most IP Items and the total number of IP
Items they have purchased.

SELECT user_name AS buyer_name, MAX(`sub`.total_items) AS
number_of_most_item_purchased
FROM(

SELECT `user`.user_name,
SUM(`order_item`.oitem_quantity) AS total_items

FROM `user`, `buyer`, `orders`, `order_item`
WHERE `order_item`.`oitem_order_id` = `orders`.order_id

AND `orders`.order_buyer_id = `buyer`.buyer_id AND
`buyer`.buyer_id = `user`.user_id

GROUP BY `user`.user_id
) AS sub;

21

3.e. List the stores that offer more than or less than a certain number of items. In the
sample, we list stores with less than 5 items.

SELECT store_id, store_name, number_of_products
FROM(

SELECT `store`.store_id, `store`.store_name,
COUNT(`product`.pro_id) AS number_of_products

FROM `store`, `product`
WHERE `store`.store_id = `product`.pro_store_id
GROUP BY `store`.store_id

) AS sub
WHERE number_of_products < 5;

22

3.f. Find the highest selling items, the total number of units of that item sold, total dollar
sales for that item, and the store/seller who sells it.

SELECT oitem_name AS most_selling_product,
MAX(total_item_sold) AS total_sold_unit, total_sold_price,
store_name, user_name AS seller_name
FROM(

SELECT oitem_id, oitem_name, oitem_pro_id,
SUM(oitem_quantity) AS total_item_sold, SUM(selling_price) AS
total_sold_price, store_name, user_name

FROM(
SELECT `order_item`.oitem_id,

`order_item`.oitem_pro_id, `order_item`.oitem_name,
`order_item`.oitem_quantity, `order_item`.oitem_price,
`order_item`.oitem_quantity*`order_item`.oitem_price AS
selling_price, `store`.store_name, `user`.user_name

FROM `order_item`,`product`, `store`, `seller`,
`user`

WHERE `order_item`.`oitem_pro_id` = `product`.pro_id
AND `product`.pro_store_id = `store`.store_id AND
`product`.pro_seller_id = `seller`.seller_id AND
`seller`.seller_id = `user`.user_id

) AS sub
GROUP BY oitem_pro_id

) AS sub2;

23

3.g. Create a list of all payment types accepted, the number of times each of them was
used, and the total amount charged to that type of payment.

SELECT acct_type AS payment_types, COUNT(acct_type) AS
used_times, ROUND(SUM(order_price),2) AS total_charges
FROM(

SELECT `orders`.order_id, `payment_method`.acct_type,
`orders`.order_price

FROM `payment_method`, `orders`, `user`
WHERE `orders`.order_pay_id = `payment_method`.pay_id

AND `payment_method`.pay_user_id = `user`.user_id AND
`user`.user_id = `orders`.order_buyer_id

GROUP BY `orders`.order_id
) AS sub
GROUP BY acct_type;

3.h. Retrieve the name and contact info of the customer who has the highest karma
point balance.

SELECT user_name AS buyer_name, user_email AS contact_info,
acct_type AS account_type, MAX(acct_balance) AS balance
FROM(

SELECT `buyer`.buyer_id, `user`.user_name, `user`.user_id,
`user`.user_email, `payment_method`.acct_type,
`payment_method`.acct_balance

FROM `buyer`, `user`, `payment_method`
WHERE `buyer`.buyer_id = `user`.user_id AND

`payment_method`.pay_user_id = `user`.user_id AND
`payment_method`.acct_balance >=0
) AS sub;

24

3.i. Create a list of top 10 rated IP items and the stores selling those.

SELECT `product`.pro_id AS product_id, `product`.pro_name AS
product_name, `store`.store_name,
AVG(`reviews`.review_item_score) AS average_score
FROM `store`, `product`, `order_item`, `reviews`
WHERE `store`.store_id = `product`.pro_store_id AND
`order_item`.oitem_pro_id = `product`.pro_id AND
`reviews`.review_oitem_id = `order_item`.oitem_id
GROUP BY `product`.pro_id
ORDER BY average_score DESC
LIMIT 10;

25

ExtraQueries.sql
4.a Find all products with their store name.

SELECT pro_id AS product_id, pro_name AS product_name,
store_name, store_id
FROM store
LEFT OUTER JOIN product ON pro_store_id = store_id
ORDER BY pro_id;

26

4.b List the average price of IPs in all the stores.

SELECT store_id, store_name, ROUND(AVG(pro_price),2) AS
average_price
FROM STORE, PRODUCT
WHERE STORE.store_id = PRODUCT.pro_store_id
GROUP BY store_id;

4.c Count the number of customer service agents.

SELECT COUNT(*) AS number_of_agents
FROM CUSTOMER_SERVICE;

27

AdvancedQueries.sql

5.a Provide a list of buyer names, along with the total dollar amount each buyer has
spent in the last year.

SELECT user_id, user_name, ROUND(SUM(order_price),2)
FROM user, buyer, orders
WHERE user_id = buyer_id AND buyer_id = order_buyer_id
AND order_date > 2020-01-01
GROUP BY user_id;

28

5.b Provide a list of buyer names and email addresses for buyers who have spent more
than the average buyer.

SELECT user_name, user_email, sumPrice
FROM(SELECT user_name, user_email, sumPrice, AVG(sumPrice) AS
average
FROM (SELECT user_name, user_email, SUM(order_price) AS
sumPrice

FROM user, buyer, orders
WHERE user_id = buyer_id AND buyer_id = order_buyer_id

GROUP BY user_id)
)
WHERE average < sumPrice;

29

5.c Provide a list of the IP Item names and associated total copies sold to all buyers,
sorted from the IP Item that has sold the most individual copies to the IP Item that has
sold the least.

SELECT pro_id, pro_name, COUNT(oitem_id) as item_count
FROM product
LEFT OUTER JOIN order_item
ON pro_id = oitem_pro_id
GROUP BY pro_id
ORDER BY item_count DESC;

30

5.d Provide a list of the IP Item names and associated dollar totals for copies sold to all
buyers, sorted from the IP Item that has sold the highest dollar amount to the IP Item
that has sold the smallest.

SELECT pro_id, pro_name, SUM(oitem_price) as total_price
FROM product
LEFT OUTER JOIN order_item
ON pro_id = oitem_pro_id
GROUP BY pro_id
ORDER BY total_price DESC;

31

5.e Find the seller who sold the most items.

SELECT user_id, user_name, item_count
FROM(

SELECT user_id, user_name, COUNT(oitem_id) AS
item_count

FROM user, seller, product, order_item
WHERE user_id = seller_id AND seller_id =

pro_seller_id AND pro_id = oitem_pro_id
GROUP BY user_id)

ORDER BY item_count DESC
LIMIT 1;

5.f Find the most profitable seller

SELECT user_id, user_name, total_price
FROM(

SELECT user_id, user_name, SUM(oitem_price) AS
total_price

FROM user, seller, product, order_item
WHERE user_id = seller_id AND seller_id =

pro_seller_id AND pro_id = oitem_pro_id
GROUP BY user_id)

ORDER BY total_price DESC
LIMIT 1;

32

5.g Provide a list of buyer names for buyers who purchased anything listed by the most
profitable seller.

SELECT user_id, user_name
FROM user,buyer, orders, order_item, product, seller
WHERE user_id = buyer_id AND order_buyer_id = buyer_id
AND order_id = oitem_order_id AND oitem_pro_id = pro_id
AND pro_seller_id = seller_id AND seller_id = (SELECT
user_id
FROM(

SELECT user_id, user_name, SUM(oitem_price) AS
total_price

FROM user, seller, product, order_item
WHERE user_id = seller_id AND seller_id =

pro_seller_id AND pro_id = oitem_pro_id
GROUP BY user_id)

ORDER BY total_price DESC
LIMIT 1);

33

5.h Provide the list of sellers who listed the IP Items purchased by the buyers who have
spent more than the average buyer.

SELECT user_id, user_name
FROM user, seller, product, order_item, orders, buyer
WHERE user_id = seller_id AND seller_id = pro_seller_id AND
pro_id = oitem_pro_id AND order_id = oitem_order_id AND
buyer_id = order_buyer_id AND buyer_id = (SELECT user_id
FROM (SELECT user_name, user_email, sumPrice, user_id
FROM(SELECT user_name, user_email, sumPrice, AVG(sumPrice) AS
average, user_id
FROM (SELECT user_name, user_email, SUM(order_price) AS
sumPrice, user_id

FROM user, buyer, orders
WHERE user_id = buyer_id AND buyer_id = order_buyer_id

GROUP BY user_id)
)
WHERE average < sumPrice)
);

34

5.i Provide sales statistics (number of items sold, highest price, lowest price, and
average price) for each type of IP item offered by a particular store.

SELECT product.pro_category, item_count,
ROUND(MAX(pro_price),2), MIN(pro_price), AVG(pro_price)
FROM store, product,(SELECT pro_category, COUNT(oitem_id) AS
item_count
FROM store, product, order_item
WHERE store_id = pro_store_id AND oitem_pro_id = pro_id AND
store_id = 800010
GROUP BY product.pro_category) AS sub
WHERE store_id = pro_store_id AND store_id = 800010 AND
sub.pro_category = product.pro_category
GROUP BY product.pro_category;

35

S2.C INSERT and DELETE SQL code samples.

INSERT samples
1. INSERT INTO USER

INSERT INTO `user` (user_id, user_name, user_DOB,
user_gender, user_email)
VALUES ('90001','Lebron
James','1984-12-30','M','james123@gmail.com'),

('90002','Kyrie
Irving','1992-03-23','F','irving123@gmail.com');

INSERT INTO `user` (user_id, user_name, user_DOB,
user_gender, user_email)
VALUES ('90003','Serena
Williams','1981-09-26','F','williams123@gmail.com');

INSERT INTO `user` (user_id, user_name, user_DOB,
user_gender, user_email)
VALUES ('90004','Taylor
Yang','2000-12-30','M','taylor@outlook.com');

36

2. INSERT INTO PRODUCTS

INSERT INTO `product` (pro_id, pro_name, pro_category,
pro_stock, pro_price, pro_store_id, pro_seller_id, pro_qi_id)
VALUES ('660001','PDF Editor V3.0','software','500','10',
'800030', '90003', '7601'),

('660002','Xon Picture 1','image','999','8.88',
'800010', '90001', '7601'),

('660003','Xon Picture 2','image','999','28.88',
'800010', '90001', '7602'),

('660004','Xon Book 1','book','500','18.88',
'800011', '90001', '7603'),

('660005','Xon Book 2','book','499','38.88',
'800011', '90001', '7604'),

('660006','David Copperfield','book','999','9.99',
'800051', '90005', '7604');

3. INSERT INTO PRODUCT_IMAGES

INSERT INTO `pro_images` (pro_image_url, images_id,
images_pro_id)
VALUES ('https://link1_1.com', '1', '660001'),

('https://link1_2.com', '2', '660001'),
('https://link1_3.com', '3', '660001'),
('https://link2.com', '1', '660002'),

('https://link5.com', '1', '660005');

37

DELETE samples:
1. DELETE FROM USER

DELETE FROM `user` WHERE user_id = 90001;
DELETE FROM `user` WHERE user_id = 90002;
DELETE FROM `user` WHERE user_id = 90003;

2. DELETE FROM PRODUCTS

DELETE FROM `product` WHERE pro_id = 660005;

Since product_images is a weak entity of product, if parent is
deleted(id=660005), then it’s children will also be
deleted(pro_image_660005)automatically.
(This delete cascade may not be able to show at sqlite.online.)

product(id=660006) cannot be deleted since there is an order(s)
related to this product. To prevent further issues (e.x.
Quality issue - sellers can delete it without further
inspection), involved products could only be deleted when no
order/refund request related to them.

38

3. DELETE FROM PRODUCT_IMAGES

DELETE FROM `pro_images` WHERE iamges_pro_id = 660001;

39

S2.D Two indexes properly explained,including SQL code.
1. From the queries, ORDERS is constantly joined with USER to find orders for specific

users. Therefore, creating an index on userID would greatly help speed up the join
condition between USER and ORDERS. Hash-base index is better in this case because
user_id is mainly used for equality tests instead of range tests.

CREATE UNIQUE INDEX idx_userID
ON `user` (user_id);

2. Often we need to search for a product under a certain price. Then having an index on
price would be very helpful. Range tests usually perform on product price so a tree-base
index is preferred in this case.

CREATE UNIQUE INDEX idx_pro_price
ON `product` (pro_price);

40

S2.E Two Views Explained,including SQL code data resulting from the execution.
1. Create a view to show all sellers with their store name and their total value of products.

CREATE VIEW SELLER_INFO (Seller_name, Store_name,
Total_value)
AS SELECT user_name, store_name,
ROUND(SUM(pro_price*pro_stock),2)

FROM USER, SELLER, STORE, PRODUCT
WHERE user_id = seller_id AND seller_id =

store_seller_id AND store_id = pro_store_id
GROUP BY user_name;

2. Create a view to show all buyers with their order counts and total money spent.

CREATE VIEW BUYER_INFO (Buyer_name, Counts, Spending)
AS SELECT user_name, COUNT(*), ROUND(SUM(order_price),2)

FROM USER, BUYER, ORDERS
WHERE user_id = buyer_id AND buyer_id = order_buyer_id
GROUP BY user_name;

41

S2F. Two transactions explained, including SQL code.

1. One transaction would be a buyer placing an order. The transaction includes inserting
an order into ORDERS, updating the account balance, and updating stock quantity of
the product if it is countable.

BEGIN TRANSACTION;

INSERT OR ROLLBACK INTO ORDERS
VALUES('4400042','2021-07-09','biden123@gmail.com','88.8

8','10004', '4', '410004');

UPDATE OR ROLLBACK PAYMENT
SET AcctBalance = AcctBalance - 88.88
WHERE userID = ‘10001’;

UPDATE OR ROLLBACK PRODUCT
SET stockQuantity = stockQuantity - 1
WHERE proID = ‘600025’;

COMMIT;

2. New users need to create an account. This transaction includes inserting a user account
in USER and inserting a new payment account into PAYMENT.

BEGIN TRANSACTION;

INSERT OR ROLLBACK INTO USER
VALUES (‘100011’, ‘John Willims’, ‘2000-01-01’, ‘M’,
‘john123@gmail.com’);

INSERT OR ROLLBACK INTO PAYMENT
VALUES ('2','400966623',NULL,'2025-09-15',NULL,'Credit',
'100011');

42

COMMIT;

Section 3 -- Team reports and Graded Checkpoint Documents

a. Detailed description of all team member contributions

The final project is roughly divided into a few portions for each team member. Nicholas has
done most of the database creation and project formatting work. Nick has also helped with
queries checking and group coordination. Peitong mostly did the data insertion for the database
and project summary. Taiyi did the work on database queries, indexes, views and transactions.
Minhye worked on the function table creation and proofread the group work. For checkpoints,
work was usually done on a rolling basis. We started right after the completion of the topic and
each member would try to finish as much work before the last day. And on the last day, we
would get together to finish the remaining work.

b. Reflection on the project completion process

We started working on the checkpoint as soon as the professor had covered the material in
class. Due to the time zone difference, we were unable to get together to work together for the
most part. The work is roughly divided and each member would finish as much as they can. On
the due day we would get together to check the finished work and work the remaining part. For
the final project, it is mainly gathering information from the previous checkpoint with some
updates. We finished all the work in the final week.

c. Description of feedback received, and revisions completed throughout the process

The feedback among the group once received. Then on the next group gathering before the
next checkpoint, we would go through the feedback and try to fix the errors. Sometimes we
went to the professor's office hours for clarification. For the final project we make sure we
resolve every feedback we have received.

43

d. Marked Project Checkpoints and Worksheets

See CP_WORK_FEEDBACK folder.

Part II --The SQL Database(README)
ROOT FOLDER
FINAL_PROJECT_TEAM_2.PDF
FINAL_PROJECT_TEAM_2.DOCX

FINAL_ERD_TEAM_2.PNG
FINAL_SCHEMA_TEAM_2.PNG

SQL_TEAM_2 FOLDER
CreateQueries.txt --- USE FIRSTLY
InsertQueries.txt --- USE SECONDLY
SimpleQueries.txt
ExtraQueries.txt
AdvancedQueries.txt

CP_WORK_FEEDBACK FOLDER --- CP01-CP04

EXTERNAL LINK
https://drive.google.com/file/d/1aqQwf0lWnXxBnASTyd1IJCcxB6T7Q0MS/view?usp=shar
ing (EERD)

https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/view?usp=shar
ing (SCHEMA)

SEE .ZIP FILE IN CARMEM ATTACHMENT.

44

https://drive.google.com/file/d/1aqQwf0lWnXxBnASTyd1IJCcxB6T7Q0MS/view?usp=sharing
https://drive.google.com/file/d/1aqQwf0lWnXxBnASTyd1IJCcxB6T7Q0MS/view?usp=sharing
https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/view?usp=sharing
https://drive.google.com/file/d/1nV6ByEymFAYSMubiAAUTvHnDHgevy4fV/view?usp=sharing

